8,327 research outputs found

    Some Paranormed Difference Sequence Spaces of Order mm Derived by Generalized Means and Compact Operators

    Full text link
    We have introduced a new sequence space l(r,s,t,p;Δ(m))l(r, s, t, p ;\Delta^{(m)}) combining by using generalized means and difference operator of order mm. We have shown that the space l(r,s,t,p;Δ(m))l(r, s, t, p ;\Delta^{(m)}) is complete under some suitable paranorm and it has Schauder basis. Furthermore, the α\alpha-, β\beta-, γ\gamma- duals of this space is computed and also obtained necessary and sufficient conditions for some matrix transformations from l(r,s,t,p;Δ(m))l(r, s, t, p; \Delta^{(m)}) to l∞,l1l_{\infty}, l_1. Finally, we obtained some identities or estimates for the operator norms and the Hausdorff measure of noncompactness of some matrix operators on the BK space lp(r,s,t;Δ(m))l_{p}(r, s, t ;\Delta^{(m)}) by applying the Hausdorff measure of noncompactness.Comment: Please withdraw this paper as there are some logical gap in some results. 20 pages. arXiv admin note: substantial text overlap with arXiv:1307.5883, arXiv:1307.5817, arXiv:1307.588

    Primordial Non-Gaussianity in the Cosmic Microwave Background

    Get PDF
    In the last few decades, advances in observational cosmology have given us a standard model of cosmology. We know the content of the universe to within a few percent. With more ambitious experiments on the way, we hope to move beyond the knowledge of what the universe is made of, to why the universe is the way it is. In this review paper we focus on primordial non-Gaussianity as a probe of the physics of the dynamics of the universe at the very earliest moments. We discuss 1) theoretical predictions from inflationary models and their observational consequences in the cosmic microwave background (CMB) anisotropies; 2) CMB--based estimators for constraining primordial non-Gaussianity with an emphasis on bispectrum templates; 3) current constraints on non-Gaussianity and what we can hope to achieve in the near future; and 4) non-primordial sources of non-Gaussianities in the CMB such as bispectrum due to second order effects, three way cross-correlation between primary-lensing-secondary CMB, and possible instrumental effects.Comment: 27 pages, 8 figures; Invited Review for the Journal "Advances in Astronomy"; references adde

    Renormalization group approach to chiral symmetry breaking in graphene

    Get PDF
    We investigate the development of a gapped phase in the field theory of Dirac fermions in graphene with long-range Coulomb interaction. In the large-N approximation, we show that the chiral symmetry is only broken below a critical number of two-component Dirac fermions Nc=32/Ï€2N_c = 32/\pi^2, that is exactly half the value found in quantum electrodynamics in 2+1 dimensions. Adopting otherwise a ladder approximation, we give evidence of the existence of a critical coupling at which the anomalous dimension of the order parameter of the transition diverges. This result is consistent with the observation that chiral symmetry breaking may be driven by the long-range Coulomb interaction in the Dirac field theory, despite the divergent scaling of the Fermi velocity in the low-energy limit.Comment: 6 pages, 4 figures, extended version with technical detail
    • …
    corecore